Department of Plant and Environmental Sciences

The worldwide potential of quinoa as a new climate-proof crop

Sven-Erik Jacobsen

seja@plen.ku.dk

Challenges

General: Growing population Climate changes

Specific:

Growing demand for meat in many parts of the world Unsustainable protein production

Agriculture's contribution to climate changes

- Water:
 - Agriculture 70%, meat>50%
- CO2 and other GGE:
 - Agriculture 30%, meat 70%

Solutions for agriculture

Challenges

General: Growing population Climate changes

Specific:

Growing demand for meat in many parts of the world Unsustainable protein production

PROTEIN 2 FOOD

Development of high quality food protein through sustainable production and processing

Global food security Environmental and socio-economic sustainability

The way we work to create climate proof cropping systems

- Improved cropping systems
- New technologies
 - Ancient
 - Irrigation
 - Water harvesting
- New genetic material
 - New varieties
 - New crops

Rice, maize and wheat > 60% global food

Agro-biodiversity

BioFach Trends

KEYWORDS

- Focus on protein
- Quinoa
- Amaranth
- Petfood
- Vegan lifestyle
- Cocktails

Number of species and cvs. tested

Species	2012	2013	2014	2015	2016
Quinoa	10	2	10	7	7
Amaranth	19	12	6	6	6
Buckwheat	3	3	3	12	14
Millet	10	9	10	15	15
Tef	3	0	0	0	0
Рорру	1	1	1	0	0
Kanahua	1	9	0	0	0
Chia	1	0	0	0	0
Lentil	32	38	12	10	10
Chickpea	51	15	6	5	5
Faba bean	5	4	4	4	4
Bean	0	0	0	1	0
Pea	1	3	0	10	10
Lupin	5	5	4	4	4
Soybean	6	8	2	2	4
Oat	2	2	2	2	0
Sorghum	(200)	16	6	6	0
Camelina	0	0	22	8	8
Total	150	127	88	92	87

Nutritional profile

- High protein, 15%
- Amino acids, all nine essential, close to complete
- Glutenfree
- Flavonoids (antioxidants) including quercetin
- B-vitamins such as riboflavin and folate
- Functional food, due to its high protein, fiber, antioxidant, vitamin, and mineral content, that may help reduce the risk of many diseases beyond cardiovascular disease and diabetes.
- Dietary fiber, soluble 1.5 g/100g
- Fatty acids, 83% unsaturated (omega6 50%, omega9 25%, omega3 5%)
- Minerals, high in Fe, Cu, Zn, Ca, Mg

"high nutritive value," impressive biodiversity, and an important role to play in the achievement of food security worldwide (FAO).

Crop production

Cultivar improvement	Crop management
Screening	Crop rotation and tillage strategies
Marker technology and transcriptomes	Nutrient management
Cooperation with breeders	Abiotic stress tolerance
	Biotic stress tolerance

Activities

Screening in field;

Agronomic practices (density, date and depth of sowing, fertilization) and response to abiotic stresses (drought and salinity);

Extension and training activities with farmers;

Methodology for quantification of 3D internal morphology of the seeds by Xray micro-tomography, and 3D image analysis of the appearance, location and type of seed structure;

Protein analyses;

Protein extraction;

Product development;

Consumer studies;

FACULTY OF SCIENCE

FIGURE 1 | Percentage of UN countries with quinoa experimentation or cultivation (1900-2015) (Bazile et al., 2016)

FACULTY OF SCIENCE

Most recent highlights

- Salt enhances antioxidant enzymes activity (Amjad et all 2015)
- Non-enzymatic antioxidant rutin level were increased by over 25th fold in quinoa leaves under salinity stress (Ismail et al., 2016)
- Saline irrigation significantly decreases the growth of quinoa, whereas inoculation of plants with bacterial strains mitigated the negative effects of salinity by improving plant water relations and decreasing Na+ uptake (Yang et al., 2016)
- Quinoa can be used as a model crop for understanding salttolerance mechanisms (Ruiz et al. 2016)
- Both yield and protein content of seed can be manipulated by N level and application strategy (Jacobsen & Christiansen, 2016)

scorbate mg⁻¹ prot. min⁻¹)

FACULTY OF SCIENCE

Livø

The Queen

Farmers ´yield, Denmark

Host	JB	Year	Yield, tha-1	¹ Emerg ence	² Weed control	Nutrients	Comments
КК	1-2	2012	0	* * *	*	25tha-1	Deer
		2013	1.2	* * * *	* *	20tha-1 + 5tha-1	Ekstremely dry summer
		2014	0.4	* * *	* * *	Mapuro 29tha 1 (95N)	Desouving
		2015 0		* *	*	tranversal starfish	Failed weeding
TW	3	2012	0	* *	* *		Broad sow
	2013	0	* *	* *	Slurry, 20tha-1 (90 N)	Broad sow	
		2014	0	* *	*		Broadsow
		2015	1.2	* * * *	* * * *		Rows in highbeds
SB	3	2012	0	*	*	Slurry at sowing	Deep sowing, frost
		2013	0	*	* *	Slurry (25tha-1, 75N)	Grassweeds
		2014	0.2	* * *	* * *	Slurry (30tha-1, 90N)	Late sowing (10/5)
		2015	0	* * *	*	40 kg N slurry	Failed weeding
КР	3	2012	-	-	-		
		2013	1.8	* * *	* * *	0 (after clovergrass)	Good development
		2014	1	* * * *	* *	0 (after clovergrass and	Skjoldbillelarve
		2015	-			041)	
PBH	3	2012	-	-	-		
		2013	0	*	*	80N	
		2014	0	*	*	80N	
		2015					

Quinoa in fancy kitchens

Knabstrup

Årstiderne

