

International Quinoa Conference 2016:

Quinoa for Future Food and Nutrition Security in Marginal Environments

Dubai, 6-8 December 2016

www.quinoaconference.com

Potential of Quinoa Production in Near East and North Africa Region

By: Dost Muhammad
FAO Regional Plant Production Officer, Cairo
Presenter emailDost.Muhammad@FAO.org

Background/Introduction

OVERVIEW OF NENA REGION

Key challenges are:

- Extremely Arid climate
- Scarce Water Resources
- Limited land

nual renewable water resources and

World

Developed countries

Developing countries

sub-Saharan Africa

Near East/North Africa

Latin America

South Asia

East Asia

irrigation	water w	ithdr	awa	ıl			
	Renewable water resources*	Water efficiency		Irrigat wate withdra	ion r iwal	Pressure on water	Pressi on wa
	cubic km	per	cent	cubic	km	p	ercent
		2005/07	2050	2005/07	2050	2005/07	205

6.6

3.9

7.9

2.7

1.4

51.8

39.7

8.2

Pressure

on water

7.0

4.0

8.5

3.8

1.6

54.1

38.9

9.3

Total arable land in use: data and projections

					1	. J		
	1961/63	2005/0	7 2005/07	2030	2050	1961- 2007	1991-2007	2005/07- 2050
						2007		2030
	million ha				percent p.a.			
World	1372	1548	1592	1645	1661	0.28	0.13	0.10
Developed countries	678	624	624	608	586	-0.17	-0.51	-0.14
Developing countries	693	923	968	1036	1075	0.65	0.60	0.24
Countries								

734

266

235

84

210

2/1

775

291

251

84

213

226

0.74

0.83

0.98

0.31

0.14

0.02

0.70

1.25

0.61

-0.17

0.06

0.07

0.34

0.51

0.49

0.00

0.08

 Ω

668

240

202

84

206

226

and India

Africa

South Asia

Toot Agia

idem excl. China

sub-Saharan Africa

Latin America

Near East/North

427

133

105

86

191

170

604

200

167

97

204

255

Over exploitation of water-Problem of Salinity

in Oman

Average grain yield (ton/ha) over years

1.100

0.800

4.017

4.000

2.735

4.158

2.517

3.285

4.350

3.233

1.037

0.678

0.909

1.109

0.829

1.238

0.800

1.151

0.973

1.459

1.049

0.090

4.120

2.170

1.937

1.690

1.820

2.393

1.545

0.285

1.200

2.157

Yemen

2.100

1.700

0.620

0.870

1.400

0.930

1.100

0.955

1.680

1.710

1.550

0.900

1.420

2.100

Average grain yield (ton/ha) over years								
	Algeria	Egypt	Iran	Iraq	Lebanon	Mauritania	Sudan	
Titicaca			3.367	1.270	3.000	1.380	4.500	
Giza 1	0.616	1.396		1.080	3.500		0.953	
Giza 2		1.374					0.473	

1.646

1.204

0.590

1.406

0.988

0.897

0.595

0.500

0.956

0.372

0.364

0.118

0.423

0.471

0.332

0.338

0.348

0.242

Santa Maria

Sajama

Q12

Q18

Q19

Q21

Q22

Q26

Q27

Q29

Q31

Amarilla Marangani

0.340

0.709

0.739

0.696

0.515

0.277

0.668

0.732

0.607

0.989

0.846

2.144

2.188

2.174

1.597

2.504

2.795

3.180

1.774

2.386

0.834

Quinoa fields top left Iran, Mauritania right, Bottom left Lebanon and Iraq

Quinoa field Lebanon Left and Mauritania right

Germination Test 2015

Genotype	Iraq*	Mauritania	Sudan
Titicaca	10**	26	12
Giza 1	16**	NA	10
Giza 2	NA	NA	16
Santa Maria	NA	18	NA
Sajama	NA	0	NA
Q12	14	10	14
Q18	16	18	24
Q19	8	8	NA
Q21	6	32	18
Q22	14	16	18
Q26	10	18	26
Q27	18	22	20
Q29	8	36	22
Q31	10	32	NA

0

6

NA

Amarilla Marangani

Seed Multiplication

- Field evaluations resulted in identification of at least 2-3 promising varieties by each country.
- All the countries are scaling up the identified varieties both at farmers' fields as well as at research centers, to involve more farmers in Quinoa production

Quinoa Seeds produced during 2016				
Countries	Seed produced (Kgs)			
	At Research	At farmers'		
	Centres	Fields		
Algeria	200	_		

	CCITCICS	i icius
Algeria	200	_
Egypt	200	01 + 00

Algeria	200	_
Egypt	290	01 ton
Lucia	015	EO kas

Egypt	290	01 ton
Iran	825	50 kgs
Lebanon	430	_

200

2195

Yemen

Total

Quinoa Production by small farmers and Private sector

- Six private companies and 20 farmers involved in Quinoa production in Egypt
- Lebanon and Iran on a limited scale with 1 - 2 farmers
- Both in Algeria and Yemen, no demand at all for Quinoa products

Quinoa Marketing in Various Countries

- quinoa marketing quite developed in some countries
- Lebanon imported in 2014-15 around 100 MT, while Egypt's import did not exceed 15 MT
- Quinoa in Lebanon is 17 times more expensive than rice and 13 to 22 times more expensive than burghol
- Price of one kg of Quinoa varies from 15-20 USD in market
- Quinoa eaters in Lebanon fall in the higher income brackets

In Egypt

- In Egypt, local Quinoa traders exploit smallscale farmers due to small produce along with limited capacities in processing Quinoa
- Traders purchase locally produced Quinoa at 2-3 USD per kg and sell at around USD 8 per kg
 While imported Quinoa is sold at 12-15 USD.
- Six private companies are producing Quinoa products and applied for registration with government

Conclusions

- Successful Quinoa Production possible in RNE countries
- Higher yields do not guarantee Quinoa success in the region Unless fits in the current cropping patterns, farming systems and market opportunities
- With the exception of Lebanon and Egypt, yet no demand in Algeria, Iran, and Yemen
- Quinoa in October-November competing with wheat/barley In mountainous areas in April/May, compets with offseason vegetables production

Conclusions

- Quinoa could never compete/replace wheat and barley
- Planted in the marginal areas affected by salinity and alkalinity Conducive governments policies
- capacity development
- Improved Quinoa varieties seeds
- Awareness Creation